GANHopper: Multi-Hop GAN for Unsupervised Image-to-Image Translation
Abstract
We introduce GANHopper, an unsupervised image-to-image translation network that transforms images gradually between two domains, through multiple hops. Instead of executing translation directly, we steer the translation by requiring the network to produce in-between images that resemble weighted hybrids between images from the input domains. Our network is trained on unpaired images from the two domains only, without any in-between images. All hops are produced using a single generator along each direction. In addition to the standard cycle-consistency and adversarial losses, we introduce a new hybrid discriminator, which is trained to classify the intermediate images produced by the generator as weighted hybrids, with weights based on a predetermined hop count. We also add a smoothness term to constrain the magnitude of each hop, further regularizing the translation. Compared to previous methods, GANHopper excels at image translations involving domain-specific image features and geometric variations while also preserving non-domain-specific features such as general color schemes
Cite
Text
Lira et al. "GANHopper: Multi-Hop GAN for Unsupervised Image-to-Image Translation." Proceedings of the European Conference on Computer Vision (ECCV), 2020. doi:10.1007/978-3-030-58574-7_22Markdown
[Lira et al. "GANHopper: Multi-Hop GAN for Unsupervised Image-to-Image Translation." Proceedings of the European Conference on Computer Vision (ECCV), 2020.](https://mlanthology.org/eccv/2020/lira2020eccv-ganhopper/) doi:10.1007/978-3-030-58574-7_22BibTeX
@inproceedings{lira2020eccv-ganhopper,
title = {{GANHopper: Multi-Hop GAN for Unsupervised Image-to-Image Translation}},
author = {Lira, Wallace and Merz, Johannes and Ritchie, Daniel and Cohen-Or, Daniel and Zhang, Hao},
booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
year = {2020},
doi = {10.1007/978-3-030-58574-7_22},
url = {https://mlanthology.org/eccv/2020/lira2020eccv-ganhopper/}
}