MTI-Net: Multi-Scale Task Interaction Networks for Multi-Task Learning
Abstract
In this paper, we argue about the importance of considering task interactions at multiple scales when distilling task information in a multi-task learning setup. In contrast to common belief, we show that tasks with high affinity at a certain scale are not guaranteed to retain this behaviour at other scales, and vice versa. We propose a novel architecture, namely MTI-Net, that builds upon this finding in three ways. First, it explicitly models task interactions at every scale via a multi-scale multi-modal distillation unit. Second, it propagates distilled task information from lower to higher scales via a feature propagation module. Third, it aggregates the refined task features from all scales via a feature aggregation unit to produce the final per-task predictions.Extensive experiments on two multi-task dense labeling datasets show that, unlike prior work, our multi-task model delivers on the full potential of multi-task learning, that is, smaller memory footprint, reduced number of calculations, and better performance w.r.t. single-task learning. The code is made publicly available.
Cite
Text
Vandenhende et al. "MTI-Net: Multi-Scale Task Interaction Networks for Multi-Task Learning." Proceedings of the European Conference on Computer Vision (ECCV), 2020. doi:10.1007/978-3-030-58548-8_31Markdown
[Vandenhende et al. "MTI-Net: Multi-Scale Task Interaction Networks for Multi-Task Learning." Proceedings of the European Conference on Computer Vision (ECCV), 2020.](https://mlanthology.org/eccv/2020/vandenhende2020eccv-mtinet/) doi:10.1007/978-3-030-58548-8_31BibTeX
@inproceedings{vandenhende2020eccv-mtinet,
title = {{MTI-Net: Multi-Scale Task Interaction Networks for Multi-Task Learning}},
author = {Vandenhende, Simon and Georgoulis, Stamatios and Van Gool, Luc},
booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
year = {2020},
doi = {10.1007/978-3-030-58548-8_31},
url = {https://mlanthology.org/eccv/2020/vandenhende2020eccv-mtinet/}
}