Polarimetric Pose Prediction

Abstract

Light has many properties that vision sensors can passively measure. Colour-band separated wavelength and intensity are arguably the most commonly used for monocular 6D object pose estimation. This paper explores how complementary polarisation information, i.e. the orientation of light wave oscillations, influences the accuracy of pose predictions. A hybrid model that leverages physical priors jointly with a data-driven learning strategy is designed and carefully tested on objects with different levels of photometric complexity. Our design significantly improves the pose accuracy compared to state-of-the-art photometric approaches and enables object pose estimation for highly reflective and transparent objects. A new multi-modal instance-level 6D object pose dataset with highly accurate pose annotations for multiple objects with varying photometric complexity is introduced as a benchmark.

Cite

Text

Gao et al. "Polarimetric Pose Prediction." Proceedings of the European Conference on Computer Vision (ECCV), 2022. doi:10.1007/978-3-031-20077-9_43

Markdown

[Gao et al. "Polarimetric Pose Prediction." Proceedings of the European Conference on Computer Vision (ECCV), 2022.](https://mlanthology.org/eccv/2022/gao2022eccv-polarimetric/) doi:10.1007/978-3-031-20077-9_43

BibTeX

@inproceedings{gao2022eccv-polarimetric,
  title     = {{Polarimetric Pose Prediction}},
  author    = {Gao, Daoyi and Li, Yitong and Ruhkamp, Patrick and Skobleva, Iuliia and Wysocki, Magdalena and Jung, HyunJun and Wang, Pengyuan and Guridi, Arturo and Busam, Benjamin},
  booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
  year      = {2022},
  doi       = {10.1007/978-3-031-20077-9_43},
  url       = {https://mlanthology.org/eccv/2022/gao2022eccv-polarimetric/}
}