How Severe Is Benchmark-Sensitivity in Video Self-Supervised Learning?
Abstract
Despite the recent success of video self-supervised learning models, there is much still to be understood about their generalization capability. In this paper, we investigate how sensitive video self-supervised learning is to the current conventional benchmark and whether methods generalize beyond the canonical evaluation setting. We do this across four different factors of sensitivity: domain, samples, actions and task. Our study which encompasses over 500 experiments on 7 video datasets, 9 self-supervised methods and 6 video understanding tasks, reveals that current benchmarks in video self-supervised learning are not good indicators of generalization along these sensitivity factors. Further, we find that self-supervised methods considerably lag behind vanilla supervised pre-training, especially when domain shift is large and the amount of available downstream samples are low. From our analysis we distill the SEVERE-benchmark, a subset of our experiments, and discuss its implication for evaluating the generalizability of representations obtained by existing and future self-supervised video learning methods. Code is available at https://github.com/fmthoker/SEVERE-BENCHMARK.
Cite
Text
Thoker et al. "How Severe Is Benchmark-Sensitivity in Video Self-Supervised Learning?." Proceedings of the European Conference on Computer Vision (ECCV), 2022. doi:10.1007/978-3-031-19830-4Markdown
[Thoker et al. "How Severe Is Benchmark-Sensitivity in Video Self-Supervised Learning?." Proceedings of the European Conference on Computer Vision (ECCV), 2022.](https://mlanthology.org/eccv/2022/thoker2022eccv-severe/) doi:10.1007/978-3-031-19830-4BibTeX
@inproceedings{thoker2022eccv-severe,
title = {{How Severe Is Benchmark-Sensitivity in Video Self-Supervised Learning?}},
author = {Thoker, Fida Mohammad and Doughty, Hazel and Bagad, Piyush and Snoek, Cees G. M.},
booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
year = {2022},
doi = {10.1007/978-3-031-19830-4},
url = {https://mlanthology.org/eccv/2022/thoker2022eccv-severe/}
}