Raising the Ceiling: Conflict-Free Local Feature Matching with Dynamic View Switching

Abstract

Current feature matching methods prioritize improving modeling capabilities to better align outputs with ground-truth matches, which are the theoretical upper bound on matching results, metaphorically depicted as the “ceiling”. However, these enhancements fail to address the underlying issues that directly hinder ground-truth matches, including the scarcity of matchable points in small scale images, matching conflicts in dense methods, and the keypoint-repeatability reliance in sparse methods. We propose a novel feature matching method named RCM, which Raises the Ceiling of Matching from three aspects. 1) RCM introduces a dynamic view switching mechanism to address the scarcity of matchable points in source images by strategically switching image pairs. 2) RCM proposes a conflict-free coarse matching module, addressing matching conflicts in the target image through a many-to-one matching strategy. 3) By integrating the semi-sparse paradigm and the coarse-to-fine architecture, RCM preserves the benefits of both high efficiency and global search, mitigating the reliance on keypoint repeatability. As a result, RCM enables more matchable points in the source image to be matched in an exhaustive and conflict-free manner in the target image, leading to a substantial 260% increase in ground-truth matches. Comprehensive experiments show that RCM exhibits remarkable performance and efficiency in comparison to state-of-the-art methods.

Cite

Text

Lu and Du. "Raising the Ceiling: Conflict-Free Local Feature Matching with Dynamic View Switching." Proceedings of the European Conference on Computer Vision (ECCV), 2024. doi:10.1007/978-3-031-72946-1_15

Markdown

[Lu and Du. "Raising the Ceiling: Conflict-Free Local Feature Matching with Dynamic View Switching." Proceedings of the European Conference on Computer Vision (ECCV), 2024.](https://mlanthology.org/eccv/2024/lu2024eccv-raising/) doi:10.1007/978-3-031-72946-1_15

BibTeX

@inproceedings{lu2024eccv-raising,
  title     = {{Raising the Ceiling: Conflict-Free Local Feature Matching with Dynamic View Switching}},
  author    = {Lu, Xiaoyong and Du, Songlin},
  booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
  year      = {2024},
  doi       = {10.1007/978-3-031-72946-1_15},
  url       = {https://mlanthology.org/eccv/2024/lu2024eccv-raising/}
}