Ray-Distance Volume Rendering for Neural Scene Reconstruction

Abstract

Existing methods in neural scene reconstruction utilize the Signed Distance Function (SDF) to model the density function. However, in indoor scenes, the density computed from the SDF for a sampled point may not consistently reflect its real importance in volume rendering, often due to the influence of neighboring objects. To tackle this issue, our work proposes a novel approach for indoor scene reconstruction, which instead parameterizes the density function with the Signed Ray Distance Function (SRDF). Firstly, the SRDF is predicted by the network and transformed to a ray-conditioned density function for volume rendering. We argue that the ray-specific SRDF only considers the surface along the camera ray, from which the derived density function is more consistent to the real occupancy than that from the SDF. Secondly, although SRDF and SDF represent different aspects of scene geometries, their values should share the same sign indicating the underlying spatial occupancy. Therefore, this work introduces a SRDF-SDF consistency loss to constrain the signs of the SRDF and SDF outputs. Thirdly, this work proposes a self-supervised visibility task, introducing the physical visibility geometry to the reconstruction task. The visibility task combines prior from predicted SRDF and SDF as pseudo labels, and contributes to generating more accurate 3D geometry. Our method implemented with different representations has been validated on indoor datasets, achieving improved performance in both reconstruction and view synthesis.

Cite

Text

Yin et al. "Ray-Distance Volume Rendering for Neural Scene Reconstruction." Proceedings of the European Conference on Computer Vision (ECCV), 2024. doi:10.1007/978-3-031-72630-9_22

Markdown

[Yin et al. "Ray-Distance Volume Rendering for Neural Scene Reconstruction." Proceedings of the European Conference on Computer Vision (ECCV), 2024.](https://mlanthology.org/eccv/2024/yin2024eccv-raydistance/) doi:10.1007/978-3-031-72630-9_22

BibTeX

@inproceedings{yin2024eccv-raydistance,
  title     = {{Ray-Distance Volume Rendering for Neural Scene Reconstruction}},
  author    = {Yin, Ruihong and Chen, Yunlu and Karaoglu, Sezer and Gevers, Theo},
  booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
  year      = {2024},
  doi       = {10.1007/978-3-031-72630-9_22},
  url       = {https://mlanthology.org/eccv/2024/yin2024eccv-raydistance/}
}