Automatic Differentiation of Damaged and Unharmed Grapes Using RGB Images and Convolutional Neural Networks

Cite

Text

Bömer et al. "Automatic Differentiation of Damaged and Unharmed Grapes Using RGB Images and Convolutional Neural Networks." European Conference on Computer Vision Workshops, 2020. doi:10.1007/978-3-030-65414-6_24

Markdown

[Bömer et al. "Automatic Differentiation of Damaged and Unharmed Grapes Using RGB Images and Convolutional Neural Networks." European Conference on Computer Vision Workshops, 2020.](https://mlanthology.org/eccvw/2020/bomer2020eccvw-automatic/) doi:10.1007/978-3-030-65414-6_24

BibTeX

@inproceedings{bomer2020eccvw-automatic,
  title     = {{Automatic Differentiation of Damaged and Unharmed Grapes Using RGB Images and Convolutional Neural Networks}},
  author    = {Bömer, Jonas and Zabawa, Laura and Sieren, Philipp and Kicherer, Anna and Klingbeil, Lasse and Rascher, Uwe and Muller, Onno and Kuhlmann, Heiner and Roscher, Ribana},
  booktitle = {European Conference on Computer Vision Workshops},
  year      = {2020},
  pages     = {347-359},
  doi       = {10.1007/978-3-030-65414-6_24},
  url       = {https://mlanthology.org/eccvw/2020/bomer2020eccvw-automatic/}
}