A Semiotic Methodology for Assessing the Compositional Effectiveness of Generative Text-to-Image Models (Midjourney and DALL·E)

Cite

Text

D'armenio et al. "A Semiotic Methodology for Assessing the Compositional Effectiveness of Generative Text-to-Image Models (Midjourney and DALL·E)." European Conference on Computer Vision Workshops, 2024. doi:10.1007/978-3-031-92089-9_8

Markdown

[D'armenio et al. "A Semiotic Methodology for Assessing the Compositional Effectiveness of Generative Text-to-Image Models (Midjourney and DALL·E)." European Conference on Computer Vision Workshops, 2024.](https://mlanthology.org/eccvw/2024/daposarmenio2024eccvw-semiotic/) doi:10.1007/978-3-031-92089-9_8

BibTeX

@inproceedings{daposarmenio2024eccvw-semiotic,
  title     = {{A Semiotic Methodology for Assessing the Compositional Effectiveness of Generative Text-to-Image Models (Midjourney and DALL·E)}},
  author    = {D'armenio, Enzo and Deliège, Adrien and Dondero, Maria Giulia},
  booktitle = {European Conference on Computer Vision Workshops},
  year      = {2024},
  pages     = {112-127},
  doi       = {10.1007/978-3-031-92089-9_8},
  url       = {https://mlanthology.org/eccvw/2024/daposarmenio2024eccvw-semiotic/}
}