Top-GAP: Integrating Size Priors in CNNs for More Interpretability, Robustness, and Bias Mitigation

Cite

Text

Nieradzik et al. "Top-GAP: Integrating Size Priors in CNNs for More Interpretability, Robustness, and Bias Mitigation." European Conference on Computer Vision Workshops, 2024. doi:10.1007/978-3-031-92648-8_9

Markdown

[Nieradzik et al. "Top-GAP: Integrating Size Priors in CNNs for More Interpretability, Robustness, and Bias Mitigation." European Conference on Computer Vision Workshops, 2024.](https://mlanthology.org/eccvw/2024/nieradzik2024eccvw-topgap/) doi:10.1007/978-3-031-92648-8_9

BibTeX

@inproceedings{nieradzik2024eccvw-topgap,
  title     = {{Top-GAP: Integrating Size Priors in CNNs for More Interpretability, Robustness, and Bias Mitigation}},
  author    = {Nieradzik, Lars and Stephani, Henrike and Keuper, Janis},
  booktitle = {European Conference on Computer Vision Workshops},
  year      = {2024},
  pages     = {134-151},
  doi       = {10.1007/978-3-031-92648-8_9},
  url       = {https://mlanthology.org/eccvw/2024/nieradzik2024eccvw-topgap/}
}