An Introduction to Variational Autoencoders
Abstract
Variational autoencoders provide a principled framework for learning deep latent-variable models and corresponding inference models. In this work, we provide an introduction to variational autoencoders and some important extensions.
Cite
Text
Kingma and Welling. "An Introduction to Variational Autoencoders." Foundations and Trends in Machine Learning, 2019. doi:10.1561/2200000056Markdown
[Kingma and Welling. "An Introduction to Variational Autoencoders." Foundations and Trends in Machine Learning, 2019.](https://mlanthology.org/ftml/2019/kingma2019ftml-introduction/) doi:10.1561/2200000056BibTeX
@article{kingma2019ftml-introduction,
title = {{An Introduction to Variational Autoencoders}},
author = {Kingma, Diederik P. and Welling, Max},
journal = {Foundations and Trends in Machine Learning},
year = {2019},
pages = {307-392},
doi = {10.1561/2200000056},
volume = {12},
url = {https://mlanthology.org/ftml/2019/kingma2019ftml-introduction/}
}