An Introduction to Variational Autoencoders

Abstract

Variational autoencoders provide a principled framework for learning deep latent-variable models and corresponding inference models. In this work, we provide an introduction to variational autoencoders and some important extensions.

Cite

Text

Kingma and Welling. "An Introduction to Variational Autoencoders." Foundations and Trends in Machine Learning, 2019. doi:10.1561/2200000056

Markdown

[Kingma and Welling. "An Introduction to Variational Autoencoders." Foundations and Trends in Machine Learning, 2019.](https://mlanthology.org/ftml/2019/kingma2019ftml-introduction/) doi:10.1561/2200000056

BibTeX

@article{kingma2019ftml-introduction,
  title     = {{An Introduction to Variational Autoencoders}},
  author    = {Kingma, Diederik P. and Welling, Max},
  journal   = {Foundations and Trends in Machine Learning},
  year      = {2019},
  pages     = {307-392},
  doi       = {10.1561/2200000056},
  volume    = {12},
  url       = {https://mlanthology.org/ftml/2019/kingma2019ftml-introduction/}
}