On the Sensitivity of the Hough Transform for Object Recognition
Abstract
Object recognition from sensory data involves, in part, determining the pose of a model with respect to a scene. A common method for finding an object's pose is the generalized Hough transform, which accumulates evidence for possible coordinate transformations in a parameter space whose axes are the quantized transformation parameters. Large clusters of similar transformations in that space are taken as evidence of a correct match. A theoretical analysis of the behavior of such methods is presented. The authors derive bounds on the set of transformations consistent with each pairing of data and model features, in the presence of noise and occlusion in the image. Bounds are provided on the likelihood of false peaks in the parameter space, as a function of noise, occlusion, and tessellation effects. It is argued that haphazardly applying such methods to complex recognition tasks is risky, as the probability of false positives can be very high. >
Cite
Text
Grimson and Huttenlocher. "On the Sensitivity of the Hough Transform for Object Recognition." IEEE/CVF International Conference on Computer Vision, 1988. doi:10.1109/CCV.1988.590054Markdown
[Grimson and Huttenlocher. "On the Sensitivity of the Hough Transform for Object Recognition." IEEE/CVF International Conference on Computer Vision, 1988.](https://mlanthology.org/iccv/1988/grimson1988iccv-sensitivity/) doi:10.1109/CCV.1988.590054BibTeX
@inproceedings{grimson1988iccv-sensitivity,
title = {{On the Sensitivity of the Hough Transform for Object Recognition}},
author = {Grimson, W. Eric L. and Huttenlocher, Daniel P.},
booktitle = {IEEE/CVF International Conference on Computer Vision},
year = {1988},
pages = {700-706},
doi = {10.1109/CCV.1988.590054},
url = {https://mlanthology.org/iccv/1988/grimson1988iccv-sensitivity/}
}