Conditional Random Fields as Recurrent Neural Networks
Abstract
Pixel-level labelling tasks, such as semantic segmentation, play a central role in image understanding. Recent approaches have attempted to harness the capabilities of deep learning techniques for image recognition to tackle pixel-level labelling tasks. One central issue in this methodology is the limited capacity of deep learning techniques to delineate visual objects. To solve this problem, we introduce a new form of convolutional neural network that combines the strengths of Convolutional Neural Networks (CNNs) and Conditional Random Fields (CRFs)-based probabilistic graphical modelling. To this end, we formulate Conditional Random Fields with Gaussian pairwise potentials and mean-field approximate inference as Recurrent Neural Networks. This network, called CRF-RNN, is then plugged in as a part of a CNN to obtain a deep network that has desirable properties of both CNNs and CRFs. Importantly, our system fully integrates CRF modelling with CNNs, making it possible to train the whole deep network end-to-end with the usual back-propagation algorithm, avoiding offline post-processing methods for object delineation. We apply the proposed method to the problem of semantic image segmentation, obtaining top results on the challenging Pascal VOC 2012 segmentation benchmark.
Cite
Text
Zheng et al. "Conditional Random Fields as Recurrent Neural Networks." International Conference on Computer Vision, 2015. doi:10.1109/ICCV.2015.179Markdown
[Zheng et al. "Conditional Random Fields as Recurrent Neural Networks." International Conference on Computer Vision, 2015.](https://mlanthology.org/iccv/2015/zheng2015iccv-conditional/) doi:10.1109/ICCV.2015.179BibTeX
@inproceedings{zheng2015iccv-conditional,
title = {{Conditional Random Fields as Recurrent Neural Networks}},
author = {Zheng, Shuai and Jayasumana, Sadeep and Romera-Paredes, Bernardino and Vineet, Vibhav and Su, Zhizhong and Du, Dalong and Huang, Chang and Torr, Philip H. S.},
booktitle = {International Conference on Computer Vision},
year = {2015},
doi = {10.1109/ICCV.2015.179},
url = {https://mlanthology.org/iccv/2015/zheng2015iccv-conditional/}
}