FREE: Feature Refinement for Generalized Zero-Shot Learning

Abstract

Generalized zero-shot learning (GZSL) has achieved significant progress, with many efforts dedicated to overcoming the problems of visual-semantic domain gaps and seen-unseen bias. However, most existing methods directly use feature extraction models trained on ImageNet alone, ignoring the cross-dataset bias between ImageNet and GZSL benchmarks. Such a bias inevitably results in poor-quality visual features for GZSL tasks, which potentially limits the recognition performance on both seen and unseen classes. In this paper, we propose a simple yet effective GZSL method, termed feature refinement for generalized zero-shot learning (FREE), to tackle the above problem. FREE employs a feature refinement (FR) module that incorporates semantic-visual mapping into a unified generative model to refine the visual features of seen and unseen class samples. Furthermore, we propose a self-adaptive margin center loss (SAMC-loss) that cooperates with a semantic cycle-consistency loss to guide FR to learn class- and semantically-relevant representations, and concatenate the features in FR to extract the fully refined features. Extensive experiments on five benchmark datasets demonstrate the significant performance gain of FREE over current state-of-the-art methods and its baseline. The code is available at https://github.com/shiming-chen/FREE.

Cite

Text

Chen et al. "FREE: Feature Refinement for Generalized Zero-Shot Learning." International Conference on Computer Vision, 2021. doi:10.1109/ICCV48922.2021.00019

Markdown

[Chen et al. "FREE: Feature Refinement for Generalized Zero-Shot Learning." International Conference on Computer Vision, 2021.](https://mlanthology.org/iccv/2021/chen2021iccv-free/) doi:10.1109/ICCV48922.2021.00019

BibTeX

@inproceedings{chen2021iccv-free,
  title     = {{FREE: Feature Refinement for Generalized Zero-Shot Learning}},
  author    = {Chen, Shiming and Wang, Wenjie and Xia, Beihao and Peng, Qinmu and You, Xinge and Zheng, Feng and Shao, Ling},
  booktitle = {International Conference on Computer Vision},
  year      = {2021},
  pages     = {122-131},
  doi       = {10.1109/ICCV48922.2021.00019},
  url       = {https://mlanthology.org/iccv/2021/chen2021iccv-free/}
}