SIMstack: A Generative Shape and Instance Model for Unordered Object Stacks

Abstract

By estimating 3D shape and instances from a single view, we can capture information about the environment quickly, without the need for comprehensive scanning and multi-view fusion. Solving this task for composite scenes (such as object stacks) is challenging: occluded areas are not only ambiguous in shape but also in instance segmentation; multiple decompositions could be valid. We observe that physics constrains decomposition as well as shape in occluded regions and hypothesise that a latent space learned from scenes built under physics simulation can serve as a prior to better predict shape and instances in occluded regions. To this end we propose SIMstack, a depth-conditioned Variational Auto-Encoder (VAE), trained on a dataset of objects stacked under physics simulation. We formulate instance segmentation as a center voting task which allows for class-agnostic detection and doesn't require setting the maximum number of objects in the scene. At test time, our model can generate 3D shape and instance segmentation from a single depth view, probabilistically sampling proposals for the occluded region from the learned latent space. We argue that this method has practical applications in providing robots some of the ability humans have to make rapid intuitive inferences of partially observed scenes. We demonstrate an application for precise (non-disruptive) object grasping of unknown objects from a single depth view.

Cite

Text

Landgraf et al. "SIMstack: A Generative Shape and Instance Model for Unordered Object Stacks." International Conference on Computer Vision, 2021. doi:10.1109/ICCV48922.2021.01277

Markdown

[Landgraf et al. "SIMstack: A Generative Shape and Instance Model for Unordered Object Stacks." International Conference on Computer Vision, 2021.](https://mlanthology.org/iccv/2021/landgraf2021iccv-simstack/) doi:10.1109/ICCV48922.2021.01277

BibTeX

@inproceedings{landgraf2021iccv-simstack,
  title     = {{SIMstack: A Generative Shape and Instance Model for Unordered Object Stacks}},
  author    = {Landgraf, Zoe and Scona, Raluca and Laidlow, Tristan and James, Stephen and Leutenegger, Stefan and Davison, Andrew J.},
  booktitle = {International Conference on Computer Vision},
  year      = {2021},
  pages     = {13012-13022},
  doi       = {10.1109/ICCV48922.2021.01277},
  url       = {https://mlanthology.org/iccv/2021/landgraf2021iccv-simstack/}
}