Self-Supervised Video Representation Learning with Meta-Contrastive Network
Abstract
Self-supervised learning has been successfully applied to pre-train video representations, which aims at efficient adaptation from pre-training domain to downstream tasks. Existing approaches merely leverage contrastive loss to learn instance-level discrimination. However, lack of category information will lead to hard-positive problem that constrains the generalization ability of this kind of methods. We find that the multi-task process of meta learning can provide a solution to this problem. In this paper, we propose a Meta-Contrastive Network (MCN), which combines the contrastive learning and meta learning, to enhance the learning ability of existing self-supervised approaches. Our method contains two training stages based on model-agnostic meta learning (MAML), each of which consists of a contrastive branch and a meta branch. Extensive evaluations demonstrate the effectiveness of our method. For two downstream tasks, i.e., video action recognition and video retrieval, MCN outperforms state-of-the-art approaches on UCF101 and HMDB51 datasets. To be more specific, with R(2+1)D backbone, MCN achieves Top-1 accuracies of 84.8% and 54.5% for video action recognition, as well as 52.5% and 23.7% for video retrieval.
Cite
Text
Lin et al. "Self-Supervised Video Representation Learning with Meta-Contrastive Network." International Conference on Computer Vision, 2021. doi:10.1109/ICCV48922.2021.00813Markdown
[Lin et al. "Self-Supervised Video Representation Learning with Meta-Contrastive Network." International Conference on Computer Vision, 2021.](https://mlanthology.org/iccv/2021/lin2021iccv-selfsupervised/) doi:10.1109/ICCV48922.2021.00813BibTeX
@inproceedings{lin2021iccv-selfsupervised,
title = {{Self-Supervised Video Representation Learning with Meta-Contrastive Network}},
author = {Lin, Yuanze and Guo, Xun and Lu, Yan},
booktitle = {International Conference on Computer Vision},
year = {2021},
pages = {8239-8249},
doi = {10.1109/ICCV48922.2021.00813},
url = {https://mlanthology.org/iccv/2021/lin2021iccv-selfsupervised/}
}