Zen-NAS: A Zero-Shot NAS for High-Performance Image Recognition

Abstract

Accuracy predictor is a key component in Neural Architecture Search (NAS) for ranking architectures. Building a high-quality accuracy predictor usually costs enormous computation. To address this issue, instead of using an accuracy predictor, we propose a novel zero-shot index dubbed Zen-Score to rank the architectures. The Zen-Score represents the network expressivity and positively correlates with the model accuracy. The calculation of Zen-Score only takes a few forward inferences through a randomly initialized network, without training network parameters. Built upon the Zen-Score, we further propose a new NAS algorithm, termed as Zen-NAS, by maximizing the Zen-Score of the target network under given inference budgets. Within less than half GPU day, Zen-NAS is able to directly search high performance architectures in a data-free style. Comparing with previous NAS methods, the proposed Zen-NAS is magnitude times faster on multiple server-side and mobile-side GPU platforms with state-of-the-art accuracy on ImageNet. Searching and training code as well as pre-trained models are available from https://github.com/idstcv/ZenNAS.

Cite

Text

Lin et al. "Zen-NAS: A Zero-Shot NAS for High-Performance Image Recognition." International Conference on Computer Vision, 2021. doi:10.1109/ICCV48922.2021.00040

Markdown

[Lin et al. "Zen-NAS: A Zero-Shot NAS for High-Performance Image Recognition." International Conference on Computer Vision, 2021.](https://mlanthology.org/iccv/2021/lin2021iccv-zennas/) doi:10.1109/ICCV48922.2021.00040

BibTeX

@inproceedings{lin2021iccv-zennas,
  title     = {{Zen-NAS: A Zero-Shot NAS for High-Performance Image Recognition}},
  author    = {Lin, Ming and Wang, Pichao and Sun, Zhenhong and Chen, Hesen and Sun, Xiuyu and Qian, Qi and Li, Hao and Jin, Rong},
  booktitle = {International Conference on Computer Vision},
  year      = {2021},
  pages     = {347-356},
  doi       = {10.1109/ICCV48922.2021.00040},
  url       = {https://mlanthology.org/iccv/2021/lin2021iccv-zennas/}
}