Score-Based Point Cloud Denoising
Abstract
Point clouds acquired from scanning devices are often perturbed by noise, which affects downstream tasks such as surface reconstruction and analysis. The distribution of a noisy point cloud can be viewed as the distribution of a set of noise-free samples p(x) convolved with some noise model n, leading to (p * n)(x) whose mode is the underlying clean surface. To denoise a noisy point cloud, we propose to increase the log-likelihood of each point from p * n via gradient ascent---iteratively updating each point's position. Since p * n is unknown at test-time, and we only need the score (i.e., the gradient of the log-probability function) to perform gradient ascent, we propose a neural network architecture to estimate the score of p * n given only noisy point clouds as input. We derive objective functions for training the network and develop a denoising algorithm leveraging on the estimated scores. Experiments demonstrate that the proposed model outperforms state-of-the-art methods under a variety of noise models, and shows the potential to be applied in other tasks such as point cloud upsampling.
Cite
Text
Luo and Hu. "Score-Based Point Cloud Denoising." International Conference on Computer Vision, 2021. doi:10.1109/ICCV48922.2021.00454Markdown
[Luo and Hu. "Score-Based Point Cloud Denoising." International Conference on Computer Vision, 2021.](https://mlanthology.org/iccv/2021/luo2021iccv-scorebased/) doi:10.1109/ICCV48922.2021.00454BibTeX
@inproceedings{luo2021iccv-scorebased,
title = {{Score-Based Point Cloud Denoising}},
author = {Luo, Shitong and Hu, Wei},
booktitle = {International Conference on Computer Vision},
year = {2021},
pages = {4583-4592},
doi = {10.1109/ICCV48922.2021.00454},
url = {https://mlanthology.org/iccv/2021/luo2021iccv-scorebased/}
}