Modulated Periodic Activations for Generalizable Local Functional Representations

Abstract

Multi-Layer Perceptrons (MLPs) make powerful functional representations for sampling and reconstruction problems involving low-dimensional signals like images,shapes and light fields. Recent works have significantly improved their ability to represent high-frequency content by using periodic activations or positional encodings. This often came at the expense of generalization: modern methods are typically optimized for a single signal. We present a new representation that generalizes to multiple instances and achieves state-of-the-art fidelity. We use a dual-MLP architecture to encode the signals. A synthesis network creates a functional mapping from a low-dimensional input(e.g. pixel-position) to the output domain (e.g. RGB color).A modulation network maps a latent code corresponding to the target signal to parameters that modulate the periodic activations of the synthesis network. We also propose a local-functional representation which enables generalization. The signal's domain is partitioned into a regular grid,with each tile represented by a latent code. At test time, the signal is encoded with high-fidelity by inferring (or directly optimizing) the latent code-book. Our approach produces generalizable functional representations of images, videos and shapes, and achieves higher reconstruction quality than prior works that are optimized for a single signal.

Cite

Text

Mehta et al. "Modulated Periodic Activations for Generalizable Local Functional Representations." International Conference on Computer Vision, 2021. doi:10.1109/ICCV48922.2021.01395

Markdown

[Mehta et al. "Modulated Periodic Activations for Generalizable Local Functional Representations." International Conference on Computer Vision, 2021.](https://mlanthology.org/iccv/2021/mehta2021iccv-modulated/) doi:10.1109/ICCV48922.2021.01395

BibTeX

@inproceedings{mehta2021iccv-modulated,
  title     = {{Modulated Periodic Activations for Generalizable Local Functional Representations}},
  author    = {Mehta, Ishit and Gharbi, Michaël and Barnes, Connelly and Shechtman, Eli and Ramamoorthi, Ravi and Chandraker, Manmohan},
  booktitle = {International Conference on Computer Vision},
  year      = {2021},
  pages     = {14214-14223},
  doi       = {10.1109/ICCV48922.2021.01395},
  url       = {https://mlanthology.org/iccv/2021/mehta2021iccv-modulated/}
}