DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features
Abstract
Image Retrieval is a fundamental task of obtaining images similar to the query one from a database. A common image retrieval practice is to firstly retrieve candidate images via similarity search using global image features and then re-rank the candidates by leveraging their local features. Previous learning-based studies mainly focus on either global or local image representation learning to tackle the retrieval task. In this paper, we abandon the two-stage paradigm and seek to design an effective single-stage solution by integrating local and global information inside images into compact image representations. Specifically, we propose a Deep Orthogonal Local and Global (DOLG) information fusion framework for end-to-end image retrieval. It attentively extracts representative local information with multi-atrous convolutions and self-attention at first. Components orthogonal to the global image representation are then extracted from the local information. At last, the orthogonal components are concatenated with the global representation as a complementary, and then aggregation is performed to generate the final representation. The whole framework is end-to-end differentiable and can be trained with image-level labels. Extensive experimental results validate the effectiveness of our solution and show that our model achieves state-of-the-art image retrieval performances on Revisited Oxford and Paris datasets.
Cite
Text
Yang et al. "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features." International Conference on Computer Vision, 2021. doi:10.1109/ICCV48922.2021.01156Markdown
[Yang et al. "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features." International Conference on Computer Vision, 2021.](https://mlanthology.org/iccv/2021/yang2021iccv-dolg/) doi:10.1109/ICCV48922.2021.01156BibTeX
@inproceedings{yang2021iccv-dolg,
title = {{DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features}},
author = {Yang, Min and He, Dongliang and Fan, Miao and Shi, Baorong and Xue, Xuetong and Li, Fu and Ding, Errui and Huang, Jizhou},
booktitle = {International Conference on Computer Vision},
year = {2021},
pages = {11772-11781},
doi = {10.1109/ICCV48922.2021.01156},
url = {https://mlanthology.org/iccv/2021/yang2021iccv-dolg/}
}