Class-Aware Patch Embedding Adaptation for Few-Shot Image Classification

Abstract

"A picture is worth a thousand words", significantly beyond mere a categorization. Accompanied by that, many patches of the image could have completely irrelevant meanings with the categorization if they were independently observed. This could significantly reduce the efficiency of a large family of few-shot learning algorithms, which have limited data and highly rely on the comparison of image patches. To address this issue, we propose a Class-aware Patch Embedding Adaptation (CPEA) method to learn "class-aware embeddings" of the image patches. The key idea of CPEA is to integrate patch embeddings with class-aware embeddings to make them class-relevant. Furthermore, we define a dense score matrix between class-relevant patch embeddings across images, based on which the degree of similarity between paired images is quantified. Visualization results show that CPEA concentrates patch embeddings by class, thus making them class-relevant. Extensive experiments on four benchmark datasets, miniImageNet, tieredImageNet, CIFAR-FS, and FC-100, indicate that our CPEA significantly outperforms the existing state-of-the-art methods. The source code is available at https://github.com/FushengHao/CPEA.

Cite

Text

Hao et al. "Class-Aware Patch Embedding Adaptation for Few-Shot Image Classification." International Conference on Computer Vision, 2023. doi:10.1109/ICCV51070.2023.01733

Markdown

[Hao et al. "Class-Aware Patch Embedding Adaptation for Few-Shot Image Classification." International Conference on Computer Vision, 2023.](https://mlanthology.org/iccv/2023/hao2023iccv-classaware/) doi:10.1109/ICCV51070.2023.01733

BibTeX

@inproceedings{hao2023iccv-classaware,
  title     = {{Class-Aware Patch Embedding Adaptation for Few-Shot Image Classification}},
  author    = {Hao, Fusheng and He, Fengxiang and Liu, Liu and Wu, Fuxiang and Tao, Dacheng and Cheng, Jun},
  booktitle = {International Conference on Computer Vision},
  year      = {2023},
  pages     = {18905-18915},
  doi       = {10.1109/ICCV51070.2023.01733},
  url       = {https://mlanthology.org/iccv/2023/hao2023iccv-classaware/}
}