How Far Pre-Trained Models Are from Neural Collapse on the Target Dataset Informs Their Transferability

Abstract

This paper focuses on model transferability estimation, i.e., assessing the performance of pre-trained models on a downstream task without performing fine-tuning. Motivated by the neural collapse (NC) that reveals the feature geometry at the terminal stage of training, our method considers the model transferability as how far the target activations obtained by pre-trained models are from their hypothetical state in the terminal phase of the fine-tuned model. We propose a metric that computes this proximity based on three phenomena of NC: within-class variability collapse, simplex encoded label interpolation geometry structure is formed, and the nearest center classifier becomes optimal on training data. Extensive experiments on 11 benchmark datasets demonstrate the effectiveness and efficiency of the proposed method over the existing SOTA approaches. Particularly, our method achieves SOTA transferability estimation accuracy with approximately 10xwall-clock time speed up compared to the existing approaches

Cite

Text

Wang et al. "How Far Pre-Trained Models Are from Neural Collapse on the Target Dataset Informs Their Transferability." International Conference on Computer Vision, 2023. doi:10.1109/ICCV51070.2023.00511

Markdown

[Wang et al. "How Far Pre-Trained Models Are from Neural Collapse on the Target Dataset Informs Their Transferability." International Conference on Computer Vision, 2023.](https://mlanthology.org/iccv/2023/wang2023iccv-far/) doi:10.1109/ICCV51070.2023.00511

BibTeX

@inproceedings{wang2023iccv-far,
  title     = {{How Far Pre-Trained Models Are from Neural Collapse on the Target Dataset Informs Their Transferability}},
  author    = {Wang, Zijian and Luo, Yadan and Zheng, Liang and Huang, Zi and Baktashmotlagh, Mahsa},
  booktitle = {International Conference on Computer Vision},
  year      = {2023},
  pages     = {5549-5558},
  doi       = {10.1109/ICCV51070.2023.00511},
  url       = {https://mlanthology.org/iccv/2023/wang2023iccv-far/}
}