Less Is More: Improving Motion Diffusion Models with Sparse Keyframes

Abstract

Recent advances in motion diffusion models have led to remarkable progress in diverse motion generation tasks, including text-to-motion synthesis.However, existing approaches represent motions as dense frame sequences, requiring the model to process redundant or less informative frames.The processing of dense animation frames imposes significant training complexity, especially when learning intricate distributions of large motion datasets even with modern neural architectures. This severely limits the performance of generative motion models for downstream tasks.Inspired by professional animators who mainly focus on sparse keyframes, we propose a novel diffusion framework explicitly designed around sparse and geometrically meaningful keyframes.Our method reduces computation by masking non-keyframes and efficiently interpolating missing frames. We dynamically refine the keyframe mask during inference to prioritize informative frames in later diffusion steps.Extensive experiments show that our approach consistently outperforms state-of-the-art methods in text alignment and motion realism, while also effectively maintaining high performance at significantly fewer diffusion steps.We further validate the robustness of our framework by using it as a generative prior and adapting it to different downstream tasks.

Cite

Text

Bae et al. "Less Is More: Improving Motion Diffusion Models with Sparse Keyframes." International Conference on Computer Vision, 2025.

Markdown

[Bae et al. "Less Is More: Improving Motion Diffusion Models with Sparse Keyframes." International Conference on Computer Vision, 2025.](https://mlanthology.org/iccv/2025/bae2025iccv-less/)

BibTeX

@inproceedings{bae2025iccv-less,
  title     = {{Less Is More: Improving Motion Diffusion Models with Sparse Keyframes}},
  author    = {Bae, Jinseok and Hwang, Inwoo and Lee, Young-Yoon and Guo, Ziyu and Liu, Joseph and Ben-Shabat, Yizhak and Kim, Young Min and Kapadia, Mubbasir},
  booktitle = {International Conference on Computer Vision},
  year      = {2025},
  pages     = {11069-11078},
  url       = {https://mlanthology.org/iccv/2025/bae2025iccv-less/}
}