GFPack++: Attention-Driven Gradient Fields for Optimizing 2D Irregular Packing
Abstract
2D irregular packing is a classic combinatorial optimization problem with various applications, such as material utilization and texture atlas generation. Due to its NP-hard nature, conventional numerical approaches typically encounter slow convergence and high computational costs. Previous research GFPack introduced a generative method for gradient-based packing, providing early evidence of its feasibility but faced limitations such as insufficient rotation support, poor boundary adaptability, and high overlap ratios. In this paper, we propose GFPack++, a deeply investigated framework that adopts attention-based geometry and relation encoding, enabling more comprehensive modeling of complex packing relationships. We further design a constrained gradient and a weighting function to enhance both the feasibility of the produced solutions and the learning effectiveness. Experimental results on multiple datasets demonstrate that GFPack++ achieves higher space utilization, supports continuous rotation, generalizes well to arbitrary boundaries, and infers orders of magnitude faster than previous approaches. Codes for this paper are at https://github.com/TimHsue/GFPack-pp.
Cite
Text
Xue et al. "GFPack++: Attention-Driven Gradient Fields for Optimizing 2D Irregular Packing." International Conference on Computer Vision, 2025.Markdown
[Xue et al. "GFPack++: Attention-Driven Gradient Fields for Optimizing 2D Irregular Packing." International Conference on Computer Vision, 2025.](https://mlanthology.org/iccv/2025/xue2025iccv-gfpack/)BibTeX
@inproceedings{xue2025iccv-gfpack,
title = {{GFPack++: Attention-Driven Gradient Fields for Optimizing 2D Irregular Packing}},
author = {Xue, Tianyang and Lu, Lin and Liu, Yang and Wu, Mingdong and Dong, Hao and Zhang, Yanbin and Han, Renmin and Chen, Baoquan},
booktitle = {International Conference on Computer Vision},
year = {2025},
pages = {18014-18023},
url = {https://mlanthology.org/iccv/2025/xue2025iccv-gfpack/}
}