SpiLiFormer: Enhancing Spiking Transformers with Lateral Inhibition

Abstract

Spiking Neural Networks (SNNs) based on Transformers have garnered significant attention due to their superior performance and high energy efficiency. However, the spiking attention modules of most existing Transformer-based SNNs are adapted from those of analog Transformers, failing to fully address the issue of over-allocating attention to irrelevant contexts. To fix this fundamental yet overlooked issue, we propose a Lateral Inhibition-inspired Spiking Transformer (SpiLiFormer). It emulates the brain's lateral inhibition mechanism, guiding the model to enhance attention to relevant tokens while suppressing attention to irrelevant ones. Our model achieves state-of-the-art (SOTA) performance across multiple datasets, including CIFAR-10 (+0.45%), CIFAR-100 (+0.48%), CIFAR10-DVS (+2.70%), N-Caltech101 (+1.94%), and ImageNet-1K (+1.6%). Notably, on the ImageNet-1K dataset, SpiLiFormer (69.9M parameters, 4 time steps, 384 resolution) outperforms E-SpikeFormer (173.0M parameters, 8 time steps, 384 resolution), a SOTA spiking Transformer, by 0.46% using only 39% of the parameters and half the time steps. The code and model checkpoints are publicly available at https://github.com/KirinZheng/SpiLiFormer.

Cite

Text

Zheng et al. "SpiLiFormer: Enhancing Spiking Transformers with Lateral Inhibition." International Conference on Computer Vision, 2025.

Markdown

[Zheng et al. "SpiLiFormer: Enhancing Spiking Transformers with Lateral Inhibition." International Conference on Computer Vision, 2025.](https://mlanthology.org/iccv/2025/zheng2025iccv-spiliformer/)

BibTeX

@inproceedings{zheng2025iccv-spiliformer,
  title     = {{SpiLiFormer: Enhancing Spiking Transformers with Lateral Inhibition}},
  author    = {Zheng, Zeqi and Huang, Yanchen and Yu, Yingchao and Zhu, Zizheng and Tang, Junfeng and Yu, Zhaofei and Jin, Yaochu},
  booktitle = {International Conference on Computer Vision},
  year      = {2025},
  pages     = {24539-24548},
  url       = {https://mlanthology.org/iccv/2025/zheng2025iccv-spiliformer/}
}