Convolutional Features for Correlation Filter Based Visual Tracking
Abstract
Visual object tracking is a challenging computer vision problem with numerous real-world applications. This paper investigates the impact of convolutional features for the visual tracking problem. We propose to use activations from the convolutional layer of a CNN in discriminative correlation filter based tracking frameworks. These activations have several advantages compared to the standard deep features (fully connected layers). Firstly, they miti-gate the need of task specific fine-tuning. Secondly, they contain structural information crucial for the tracking problem. Lastly, these activations have low dimensionality. We perform comprehensive experiments on three benchmark datasets: OTB, ALOV300++ and the recently introduced VOT2015. Surprisingly, different to image classification, our results suggest that activations from the first layer provide superior tracking performance compared to the deeper layers. Our results further show that the convolutional features provide improved results compared to standard hand-crafted features. Finally, results comparable to state-of-the-art trackers are obtained on all three benchmark datasets.
Cite
Text
Danelljan et al. "Convolutional Features for Correlation Filter Based Visual Tracking." IEEE/CVF International Conference on Computer Vision Workshops, 2015. doi:10.1109/ICCVW.2015.84Markdown
[Danelljan et al. "Convolutional Features for Correlation Filter Based Visual Tracking." IEEE/CVF International Conference on Computer Vision Workshops, 2015.](https://mlanthology.org/iccvw/2015/danelljan2015iccvw-convolutional/) doi:10.1109/ICCVW.2015.84BibTeX
@inproceedings{danelljan2015iccvw-convolutional,
title = {{Convolutional Features for Correlation Filter Based Visual Tracking}},
author = {Danelljan, Martin and Häger, Gustav and Khan, Fahad Shahbaz and Felsberg, Michael},
booktitle = {IEEE/CVF International Conference on Computer Vision Workshops},
year = {2015},
pages = {621-629},
doi = {10.1109/ICCVW.2015.84},
url = {https://mlanthology.org/iccvw/2015/danelljan2015iccvw-convolutional/}
}