Fourier-CPPNs for Image Synthesis
Abstract
Compositional Pattern Producing Networks (CPPNs) are differentiable networks that independently map (x, y) pixel coordinates to (r, g, b) colour values. Recently, CPPNs have been used for creating interesting imagery for creative purposes, e.g., neural art. However their architecture biases generated images to be overly smooth, lacking high-frequency detail. In this work, we extend CPPNs to explicitly model the frequency information for each pixel output, capturing frequencies beyond the DC component. We show that our Fourier-CPPNs (F-CPPNs) provide improved visual detail for image synthesis.
Cite
Text
Tesfaldet et al. "Fourier-CPPNs for Image Synthesis." IEEE/CVF International Conference on Computer Vision Workshops, 2019. doi:10.1109/ICCVW.2019.00392Markdown
[Tesfaldet et al. "Fourier-CPPNs for Image Synthesis." IEEE/CVF International Conference on Computer Vision Workshops, 2019.](https://mlanthology.org/iccvw/2019/tesfaldet2019iccvw-fouriercppns/) doi:10.1109/ICCVW.2019.00392BibTeX
@inproceedings{tesfaldet2019iccvw-fouriercppns,
title = {{Fourier-CPPNs for Image Synthesis}},
author = {Tesfaldet, Mattie and Snelgrove, Xavier and Vázquez, David},
booktitle = {IEEE/CVF International Conference on Computer Vision Workshops},
year = {2019},
pages = {3173-3176},
doi = {10.1109/ICCVW.2019.00392},
url = {https://mlanthology.org/iccvw/2019/tesfaldet2019iccvw-fouriercppns/}
}