Moving Object Detection for Event-Based Vision Using Graph Spectral Clustering

Abstract

Moving object detection has been a central topic of discussion in computer vision for its wide range of applications like in self-driving cars, video surveillance, security, and enforcement. Neuromorphic Vision Sensors (NVS) are bio-inspired sensors that mimic the working of the human eye. Unlike conventional frame-based cameras, these sensors capture a stream of asynchronous ‘events’ that pose multiple advantages over the former, like high dynamic range, low latency, low power consumption, and reduced motion blur. However, these advantages come at a high cost, as the event camera data typically contains more noise and has low resolution. Moreover, as event-based cameras can only capture the relative changes in brightness of a scene, event data do not contain usual visual information (like texture and color) as available in video data from normal cameras. So, moving object detection in event-based cameras becomes an extremely challenging task. In this paper, we present an unsupervised Graph Spectral Clustering technique for Moving Object Detection in Event-based data (GSCEventMOD). We additionally show how the optimum number of moving objects can be automatically determined. Experimental comparisons on publicly available datasets show that the proposed GSCEventMOD algorithm outperforms a number of state-of-the-art techniques by a maximum margin of 30%.

Cite

Text

Mondal et al. "Moving Object Detection for Event-Based Vision Using Graph Spectral Clustering." IEEE/CVF International Conference on Computer Vision Workshops, 2021. doi:10.1109/ICCVW54120.2021.00103

Markdown

[Mondal et al. "Moving Object Detection for Event-Based Vision Using Graph Spectral Clustering." IEEE/CVF International Conference on Computer Vision Workshops, 2021.](https://mlanthology.org/iccvw/2021/mondal2021iccvw-moving/) doi:10.1109/ICCVW54120.2021.00103

BibTeX

@inproceedings{mondal2021iccvw-moving,
  title     = {{Moving Object Detection for Event-Based Vision Using Graph Spectral Clustering}},
  author    = {Mondal, Anindya and R, Shashant and Giraldo, Jhony H. and Bouwmans, Thierry and Chowdhury, Ananda S.},
  booktitle = {IEEE/CVF International Conference on Computer Vision Workshops},
  year      = {2021},
  pages     = {876-884},
  doi       = {10.1109/ICCVW54120.2021.00103},
  url       = {https://mlanthology.org/iccvw/2021/mondal2021iccvw-moving/}
}