Scalable Learning and MAP Inference for Nonsymmetric Determinantal Point Processes

Abstract

Determinantal point processes (DPPs) have attracted significant attention in machine learning for their ability to model subsets drawn from a large item collection. Recent work shows that nonsymmetric DPP (NDPP) kernels have significant advantages over symmetric kernels in terms of modeling power and predictive performance. However, for an item collection of size $M$, existing NDPP learning and inference algorithms require memory quadratic in $M$ and runtime cubic (for learning) or quadratic (for inference) in $M$, making them impractical for many typical subset selection tasks. In this work, we develop a learning algorithm with space and time requirements linear in $M$ by introducing a new NDPP kernel decomposition. We also derive a linear-complexity NDPP maximum a posteriori (MAP) inference algorithm that applies not only to our new kernel but also to that of prior work. Through evaluation on real-world datasets, we show that our algorithms scale significantly better, and can match the predictive performance of prior work.

Cite

Text

Gartrell et al. "Scalable Learning and MAP Inference for Nonsymmetric Determinantal Point Processes." International Conference on Learning Representations, 2021.

Markdown

[Gartrell et al. "Scalable Learning and MAP Inference for Nonsymmetric Determinantal Point Processes." International Conference on Learning Representations, 2021.](https://mlanthology.org/iclr/2021/gartrell2021iclr-scalable/)

BibTeX

@inproceedings{gartrell2021iclr-scalable,
  title     = {{Scalable Learning and MAP Inference for Nonsymmetric Determinantal Point Processes}},
  author    = {Gartrell, Mike and Han, Insu and Dohmatob, Elvis and Gillenwater, Jennifer and Brunel, Victor-Emmanuel},
  booktitle = {International Conference on Learning Representations},
  year      = {2021},
  url       = {https://mlanthology.org/iclr/2021/gartrell2021iclr-scalable/}
}