A Global Convergence Theory for Deep ReLU Implicit Networks via Over-Parameterization
Abstract
Implicit deep learning has received increasing attention recently due to the fact that it generalizes the recursive prediction rule of many commonly used neural network architectures. Its prediction rule is provided implicitly based on the solution of an equilibrium equation. Although a line of recent empirical studies has demonstrated its superior performances, the theoretical understanding of implicit neural networks is limited. In general, the equilibrium equation may not be well-posed during the training. As a result, there is no guarantee that a vanilla (stochastic) gradient descent (SGD) training nonlinear implicit neural networks can converge. This paper fills the gap by analyzing the gradient flow of Rectified Linear Unit (ReLU) activated implicit neural networks. For an $m$ width implicit neural network with ReLU activation and $n$ training samples, we show that a randomly initialized gradient descent converges to a global minimum at a linear rate for the square loss function if the implicit neural network is over-parameterized. It is worth noting that, unlike existing works on the convergence of (S)GD on finite-layer over-parameterized neural networks, our convergence results hold for implicit neural networks, where the number of layers is infinite.
Cite
Text
Gao et al. "A Global Convergence Theory for Deep ReLU Implicit Networks via Over-Parameterization." International Conference on Learning Representations, 2022.Markdown
[Gao et al. "A Global Convergence Theory for Deep ReLU Implicit Networks via Over-Parameterization." International Conference on Learning Representations, 2022.](https://mlanthology.org/iclr/2022/gao2022iclr-global/)BibTeX
@inproceedings{gao2022iclr-global,
title = {{A Global Convergence Theory for Deep ReLU Implicit Networks via Over-Parameterization}},
author = {Gao, Tianxiang and Liu, Hailiang and Liu, Jia and Rajan, Hridesh and Gao, Hongyang},
booktitle = {International Conference on Learning Representations},
year = {2022},
url = {https://mlanthology.org/iclr/2022/gao2022iclr-global/}
}