Fast Regression for Structured Inputs

Abstract

We study the $\ell_p$ regression problem, which requires finding $\mathbf{x}\in\mathbb R^{d}$ that minimizes $\|\mathbf{A}\mathbf{x}-\mathbf{b}\|_p$ for a matrix $\mathbf{A}\in\mathbb R^{n \times d}$ and response vector $\mathbf{b}\in\mathbb R^{n}$. There has been recent interest in developing subsampling methods for this problem that can outperform standard techniques when $n$ is very large. However, all known subsampling approaches have run time that depends exponentially on $p$, typically, $d^{\mathcal{O}(p)}$, which can be prohibitively expensive. We improve on this work by showing that for a large class of common \emph{structured matrices}, such as combinations of low-rank matrices, sparse matrices, and Vandermonde matrices, there are subsampling based methods for $\ell_p$ regression that depend polynomially on $p$. For example, we give an algorithm for $\ell_p$ regression on Vandermonde matrices that runs in time $\mathcal{O}(n\log^3 n+(dp^2)^{0.5+\omega}\cdot\text{polylog}\,n)$, where $\omega$ is the exponent of matrix multiplication. The polynomial dependence on $p$ crucially allows our algorithms to extend naturally to efficient algorithms for $\ell_\infty$ regression, via approximation of $\ell_\infty$ by $\ell_{\mathcal{O}(\log n)}$. Of practical interest, we also develop a new subsampling algorithm for $\ell_p$ regression for arbitrary matrices, which is simpler than previous approaches for $p \ge 4$.

Cite

Text

Meyer et al. "Fast Regression for Structured Inputs." International Conference on Learning Representations, 2022.

Markdown

[Meyer et al. "Fast Regression for Structured Inputs." International Conference on Learning Representations, 2022.](https://mlanthology.org/iclr/2022/meyer2022iclr-fast/)

BibTeX

@inproceedings{meyer2022iclr-fast,
  title     = {{Fast Regression for Structured Inputs}},
  author    = {Meyer, Raphael A and Musco, Cameron N and Musco, Christopher P and Woodruff, David and Zhou, Samson},
  booktitle = {International Conference on Learning Representations},
  year      = {2022},
  url       = {https://mlanthology.org/iclr/2022/meyer2022iclr-fast/}
}