Representing Mixtures of Word Embeddings with Mixtures of Topic Embeddings
Abstract
A topic model is often formulated as a generative model that explains how each word of a document is generated given a set of topics and document-specific topic proportions. It is focused on capturing the word co-occurrences in a document and hence often suffers from poor performance in analyzing short documents. In addition, its parameter estimation often relies on approximate posterior inference that is either not scalable or suffering from large approximation error. This paper introduces a new topic-modeling framework where each document is viewed as a set of word embedding vectors and each topic is modeled as an embedding vector in the same embedding space. Embedding the words and topics in the same vector space, we define a method to measure the semantic difference between the embedding vectors of the words of a document and these of the topics, and optimize the topic embeddings to minimize the expected difference over all documents. Experiments on text analysis demonstrate that the proposed method, which is amenable to mini-batch stochastic gradient descent based optimization and hence scalable to big corpora, provides competitive performance in discovering more coherent and diverse topics and extracting better document representations.
Cite
Text
Wang et al. "Representing Mixtures of Word Embeddings with Mixtures of Topic Embeddings." International Conference on Learning Representations, 2022.Markdown
[Wang et al. "Representing Mixtures of Word Embeddings with Mixtures of Topic Embeddings." International Conference on Learning Representations, 2022.](https://mlanthology.org/iclr/2022/wang2022iclr-representing/)BibTeX
@inproceedings{wang2022iclr-representing,
title = {{Representing Mixtures of Word Embeddings with Mixtures of Topic Embeddings}},
author = {Wang, Dongsheng and Guo, Dan dan and Zhao, He and Zheng, Huangjie and Tanwisuth, Korawat and Chen, Bo and Zhou, Mingyuan},
booktitle = {International Conference on Learning Representations},
year = {2022},
url = {https://mlanthology.org/iclr/2022/wang2022iclr-representing/}
}