FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated Learning

Abstract

Federated Learning (FL) is a distributed learning paradigm that enables different parties to train a model together for high quality and strong privacy protection. In this scenario, individual participants may get compromised and perform backdoor attacks by poisoning the data (or gradients). Existing work on robust aggregation and certified FL robustness does not study how hardening benign clients can affect the global model (and the malicious clients). In this work, we theoretically analyze the connection among cross-entropy loss, attack success rate, and clean accuracy in this setting. Moreover, we propose a trigger reverse engineering based defense and show that our method can achieve robustness improvement with guarantee (i.e., reducing the attack success rate) without affecting benign accuracy. We conduct comprehensive experiments across different datasets and attack settings. Our results on nine competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks. Code is available at https://github.com/KaiyuanZh/FLIP.

Cite

Text

Zhang et al. "FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated Learning." International Conference on Learning Representations, 2023.

Markdown

[Zhang et al. "FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated Learning." International Conference on Learning Representations, 2023.](https://mlanthology.org/iclr/2023/zhang2023iclr-flip/)

BibTeX

@inproceedings{zhang2023iclr-flip,
  title     = {{FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated Learning}},
  author    = {Zhang, Kaiyuan and Tao, Guanhong and Xu, Qiuling and Cheng, Siyuan and An, Shengwei and Liu, Yingqi and Feng, Shiwei and Shen, Guangyu and Chen, Pin-Yu and Ma, Shiqing and Zhang, Xiangyu},
  booktitle = {International Conference on Learning Representations},
  year      = {2023},
  url       = {https://mlanthology.org/iclr/2023/zhang2023iclr-flip/}
}