Adaptive Self-Training Framework for Fine-Grained Scene Graph Generation

Abstract

Scene graph generation (SGG) models have suffered from inherent problems regarding the benchmark datasets such as the long-tailed predicate distribution and missing annotation problems. In this work, we aim to alleviate the long-tailed problem of SGG by utilizing unannotated triplets. To this end, we introduce a **S**elf-**T**raining framework for **SGG** **(ST-SGG)** that assigns pseudo-labels for unannotated triplets based on which the SGG models are trained. While there has been significant progress in self-training for image recognition, designing a self-training framework for the SGG task is more challenging due to its inherent nature such as the semantic ambiguity and the long-tailed distribution of predicate classes. Hence, we propose a novel pseudo-labeling technique for SGG, called **C**lass-specific **A**daptive **T**hresholding with **M**omentum **(CATM)**, which is a model-agnostic framework that can be applied to any existing SGG models. Furthermore, we devise a graph structure learner (GSL) that is beneficial when adopting our proposed self-training framework to the state-of-the-art message-passing neural network (MPNN)-based SGG models. Our extensive experiments verify the effectiveness of ST-SGG on various SGG models, particularly in enhancing the performance on fine-grained predicate classes.

Cite

Text

Kim et al. "Adaptive Self-Training Framework for Fine-Grained Scene Graph Generation." International Conference on Learning Representations, 2024.

Markdown

[Kim et al. "Adaptive Self-Training Framework for Fine-Grained Scene Graph Generation." International Conference on Learning Representations, 2024.](https://mlanthology.org/iclr/2024/kim2024iclr-adaptive-a/)

BibTeX

@inproceedings{kim2024iclr-adaptive-a,
  title     = {{Adaptive Self-Training Framework for Fine-Grained Scene Graph Generation}},
  author    = {Kim, Kibum and Yoon, Kanghoon and In, Yeonjun and Moon, Jinyoung and Kim, Donghyun and Park, Chanyoung},
  booktitle = {International Conference on Learning Representations},
  year      = {2024},
  url       = {https://mlanthology.org/iclr/2024/kim2024iclr-adaptive-a/}
}