BarLeRIa: An Efficient Tuning Framework for Referring Image Segmentation

Abstract

Pre-training followed by full fine-tuning has gradually been substituted by Parameter-Efficient Tuning (PET) in the field of computer vision. PET has gained popularity, especially in the context of large-scale models, due to its ability to reduce transfer learning costs and conserve hardware resources. However, existing PET approaches primarily focus on recognition tasks and typically support uni-modal optimization, while neglecting dense prediction tasks and vision language interactions. To address this limitation, we propose a novel PET framework called **B**i-direction**a**l Inte**r**twined Vision **L**anguage Effici**e**nt Tuning for **R**eferring **I**mage Segment**a**tion (**BarLeRIa**), which leverages bi-directional intertwined vision language adapters to fully exploit the frozen pre-trained models' potential in cross-modal dense prediction tasks. In BarLeRIa, two different tuning modules are employed for efficient attention, one for global, and the other for local, along with an intertwined vision language tuning module for efficient modal fusion. Extensive experiments conducted on RIS benchmarks demonstrate the superiority of BarLeRIa over prior PET methods with a significant margin, i.e., achieving an average improvement of 5.6\%. Remarkably, without requiring additional training datasets, BarLeRIa even surpasses SOTA full fine-tuning approaches. The code is available at https://github.com/NastrondAd/BarLeRIa.

Cite

Text

Wang et al. "BarLeRIa: An Efficient Tuning Framework for Referring Image Segmentation." International Conference on Learning Representations, 2024.

Markdown

[Wang et al. "BarLeRIa: An Efficient Tuning Framework for Referring Image Segmentation." International Conference on Learning Representations, 2024.](https://mlanthology.org/iclr/2024/wang2024iclr-barleria/)

BibTeX

@inproceedings{wang2024iclr-barleria,
  title     = {{BarLeRIa: An Efficient Tuning Framework for Referring Image Segmentation}},
  author    = {Wang, Yaoming and Li, Jin and Zhang, Xiaopeng and Shi, Bowen and Li, Chenglin and Dai, Wenrui and Xiong, Hongkai and Tian, Qi},
  booktitle = {International Conference on Learning Representations},
  year      = {2024},
  url       = {https://mlanthology.org/iclr/2024/wang2024iclr-barleria/}
}