Chain-of-Table: Evolving Tables in the Reasoning Chain for Table Understanding

Abstract

Table-based reasoning with large language models (LLMs) is a promising direction to tackle many table understanding tasks, such as table-based question answering and fact verification. Compared with generic reasoning, table-based reasoning requires the extraction of underlying semantics from both free-form questions and semi-structured tabular data. Chain-of-Thought and its similar approaches incorporate the reasoning chain in the form of textual context, but it is still an open question how to effectively leverage tabular data in the reasoning chain. We propose the Chain-of-Table framework, where tabular data is explicitly used in the reasoning chain as a proxy for intermediate thoughts. Specifically, we guide LLMs using in-context learning to iteratively generate operations and update the table to represent a tabular reasoning chain. LLMs can therefore dynamically plan the next operation based on the results of the previous ones. This continuous evolution of the table forms a chain, showing the reasoning process for a given tabular problem. The chain carries structured information of the intermediate results, enabling more accurate and reliable predictions. Chain-of-Table achieves new state-of-the-art performance on WikiTQ, FeTaQA, and TabFact benchmarks across multiple LLM choices.

Cite

Text

Wang et al. "Chain-of-Table: Evolving Tables in the Reasoning Chain for Table Understanding." International Conference on Learning Representations, 2024.

Markdown

[Wang et al. "Chain-of-Table: Evolving Tables in the Reasoning Chain for Table Understanding." International Conference on Learning Representations, 2024.](https://mlanthology.org/iclr/2024/wang2024iclr-chainoftable/)

BibTeX

@inproceedings{wang2024iclr-chainoftable,
  title     = {{Chain-of-Table: Evolving Tables in the Reasoning Chain for Table Understanding}},
  author    = {Wang, Zilong and Zhang, Hao and Li, Chun-Liang and Eisenschlos, Julian Martin and Perot, Vincent and Wang, Zifeng and Miculicich, Lesly and Fujii, Yasuhisa and Shang, Jingbo and Lee, Chen-Yu and Pfister, Tomas},
  booktitle = {International Conference on Learning Representations},
  year      = {2024},
  url       = {https://mlanthology.org/iclr/2024/wang2024iclr-chainoftable/}
}