Prediction Error-Based Classification for Class-Incremental Learning

Abstract

Class-incremental learning (CIL) is a particularly challenging variant of continual learning, where the goal is to learn to discriminate between all classes presented in an incremental fashion. Existing approaches often suffer from excessive forgetting and imbalance of the scores assigned to classes that have not been seen together during training. In this study, we introduce a novel approach, Prediction Error-based Classification (PEC), which differs from traditional discriminative and generative classification paradigms. PEC computes a class score by measuring the prediction error of a model trained to replicate the outputs of a frozen random neural network on data from that class. The method can be interpreted as approximating a classification rule based on Gaussian Process posterior variance. PEC offers several practical advantages, including sample efficiency, ease of tuning, and effectiveness even when data are presented one class at a time. Our empirical results show that PEC performs strongly in single-pass-through-data CIL, outperforming other rehearsal-free baselines in all cases and rehearsal-based methods with moderate replay buffer size in most cases across multiple benchmarks.

Cite

Text

Zając et al. "Prediction Error-Based Classification for Class-Incremental Learning." International Conference on Learning Representations, 2024.

Markdown

[Zając et al. "Prediction Error-Based Classification for Class-Incremental Learning." International Conference on Learning Representations, 2024.](https://mlanthology.org/iclr/2024/zajac2024iclr-prediction/)

BibTeX

@inproceedings{zajac2024iclr-prediction,
  title     = {{Prediction Error-Based Classification for Class-Incremental Learning}},
  author    = {Zając, Michał and Tuytelaars, Tinne and van de Ven, Gido M},
  booktitle = {International Conference on Learning Representations},
  year      = {2024},
  url       = {https://mlanthology.org/iclr/2024/zajac2024iclr-prediction/}
}