On the Expressiveness of Rational ReLU Neural Networks with Bounded Depth
Abstract
To confirm that the expressive power of ReLU neural networks grows with their depth, the function $F_n = \max (0,x_1,\ldots,x_n )$ has been considered in the literature. A conjecture by Hertrich, Basu, Di Summa, and Skutella [NeurIPS 2021] states that any ReLU network that exactly represents $F_n$ has at least $\lceil \log_2 (n+1) \rceil$ hidden layers. The conjecture has recently been confirmed for networks with integer weights by Haase, Hertrich, and Loho [ICLR 2023]. We follow up on this line of research and show that, within ReLU networks whose weights are decimal fractions, $F_n$ can only be represented by networks with at least $\lceil \log_3 (n+1) \rceil$ hidden layers. Moreover, if all weights are $N$-ary fractions, then $F_n$ can only be represented by networks with at least $\Omega( \frac{\ln n}{\ln \ln N})$ layers. These results are a partial confirmation of the above conjecture for rational ReLU networks, and provide the first non-constant lower bound on the depth of practically relevant ReLU networks.
Cite
Text
Averkov et al. "On the Expressiveness of Rational ReLU Neural Networks with Bounded Depth." International Conference on Learning Representations, 2025.Markdown
[Averkov et al. "On the Expressiveness of Rational ReLU Neural Networks with Bounded Depth." International Conference on Learning Representations, 2025.](https://mlanthology.org/iclr/2025/averkov2025iclr-expressiveness/)BibTeX
@inproceedings{averkov2025iclr-expressiveness,
title = {{On the Expressiveness of Rational ReLU Neural Networks with Bounded Depth}},
author = {Averkov, Gennadiy and Hojny, Christopher and Merkert, Maximilian},
booktitle = {International Conference on Learning Representations},
year = {2025},
url = {https://mlanthology.org/iclr/2025/averkov2025iclr-expressiveness/}
}