PhyloVAE: Unsupervised Learning of Phylogenetic Trees via Variational Autoencoders
Abstract
Learning informative representations of phylogenetic tree structures is essential for analyzing evolutionary relationships. Classical distance-based methods have been widely used to project phylogenetic trees into Euclidean space, but they are often sensitive to the choice of distance metric and may lack sufficient resolution. In this paper, we introduce *phylogenetic variational autoencoders* (PhyloVAEs), an unsupervised learning framework designed for representation learning and generative modeling of tree topologies. Leveraging an efficient encoding mechanism inspired by autoregressive tree topology generation, we develop a deep latent-variable generative model that facilitates fast, parallelized topology generation. PhyloVAE combines this generative model with a collaborative inference model based on learnable topological features, allowing for high-resolution representations of phylogenetic tree samples. Extensive experiments demonstrate PhyloVAE's robust representation learning capabilities and fast generation of phylogenetic tree topologies.
Cite
Text
Xie et al. "PhyloVAE: Unsupervised Learning of Phylogenetic Trees via Variational Autoencoders." International Conference on Learning Representations, 2025.Markdown
[Xie et al. "PhyloVAE: Unsupervised Learning of Phylogenetic Trees via Variational Autoencoders." International Conference on Learning Representations, 2025.](https://mlanthology.org/iclr/2025/xie2025iclr-phylovae/)BibTeX
@inproceedings{xie2025iclr-phylovae,
title = {{PhyloVAE: Unsupervised Learning of Phylogenetic Trees via Variational Autoencoders}},
author = {Xie, Tianyu and Richman, Harry and Gao, Jiansi and Matsen, Frederick A and Zhang, Cheng},
booktitle = {International Conference on Learning Representations},
year = {2025},
url = {https://mlanthology.org/iclr/2025/xie2025iclr-phylovae/}
}