Discrete GCBF Proximal Policy Optimization for Multi-Agent Safe Optimal Control
Abstract
Control policies that can achieve high task performance and satisfy safety constraints are desirable for any system, including multi-agent systems (MAS). One promising technique for ensuring the safety of MAS is distributed control barrier functions (CBF). However, it is difficult to design distributed CBF-based policies for MAS that can tackle unknown discrete-time dynamics, partial observability, changing neighborhoods, and input constraints, especially when a distributed high-performance nominal policy that can achieve the task is unavailable. To tackle these challenges, we propose **DGPPO**, a new framework that *simultaneously* learns both a *discrete* graph CBF which handles neighborhood changes and input constraints, and a distributed high-performance safe policy for MAS with unknown discrete-time dynamics. We empirically validate our claims on a suite of multi-agent tasks spanning three different simulation engines. The results suggest that, compared with existing methods, our DGPPO framework obtains policies that achieve high task performance (matching baselines that ignore the safety constraints), and high safety rates (matching the most conservative baselines), with a *constant* set of hyperparameters across all environments.
Cite
Text
Zhang et al. "Discrete GCBF Proximal Policy Optimization for Multi-Agent Safe Optimal Control." International Conference on Learning Representations, 2025.Markdown
[Zhang et al. "Discrete GCBF Proximal Policy Optimization for Multi-Agent Safe Optimal Control." International Conference on Learning Representations, 2025.](https://mlanthology.org/iclr/2025/zhang2025iclr-discrete/)BibTeX
@inproceedings{zhang2025iclr-discrete,
title = {{Discrete GCBF Proximal Policy Optimization for Multi-Agent Safe Optimal Control}},
author = {Zhang, Songyuan and So, Oswin and Black, Mitchell and Fan, Chuchu},
booktitle = {International Conference on Learning Representations},
year = {2025},
url = {https://mlanthology.org/iclr/2025/zhang2025iclr-discrete/}
}