Amortized Finite Element Analysis for Fast PDE-Constrained Optimization

Abstract

Optimizing the parameters of partial differential equations (PDEs), i.e., PDE-constrained optimization (PDE-CO), allows us to model natural systems from observations or perform rational design of structures with complicated mechanical, thermal, or electromagnetic properties. However, PDE-CO is often computationally prohibitive due to the need to solve the PDE—typically via finite element analysis (FEA)—at each step of the optimization procedure. In this paper we propose amortized finite element analysis (AmorFEA), in which a neural network learns to produce accurate PDE solutions, while preserving many of the advantages of traditional finite element methods. As FEA is a variational procedure, AmorFEA is a direct analogue to popular amortized inference approaches in latent variable models, with the finite element basis acting as the variational family. AmorFEA can perform PDE-CO without the need to repeatedly solve the associated PDE, accelerating optimization when compared to a traditional workflow using FEA and the adjoint method.

Cite

Text

Xue et al. "Amortized Finite Element Analysis for Fast PDE-Constrained Optimization." ICLR 2020 Workshops: DeepDiffEq, 2020.

Markdown

[Xue et al. "Amortized Finite Element Analysis for Fast PDE-Constrained Optimization." ICLR 2020 Workshops: DeepDiffEq, 2020.](https://mlanthology.org/iclrw/2020/xue2020iclrw-amortized/)

BibTeX

@inproceedings{xue2020iclrw-amortized,
  title     = {{Amortized Finite Element Analysis for Fast PDE-Constrained Optimization}},
  author    = {Xue, Tianju and Beatson, Alex and Adriaenssens, Sigrid and Adams, Ryan P.},
  booktitle = {ICLR 2020 Workshops: DeepDiffEq},
  year      = {2020},
  url       = {https://mlanthology.org/iclrw/2020/xue2020iclrw-amortized/}
}