Denoising Diffusion Probabilistic Models on SO(3) for Rotational Alignment
Abstract
Probabilistic diffusion models are capable of modeling complex data distributions on high-dimensional Euclidean spaces for a range applications. However, many real world tasks involve more complex structures such as data distributions defined on manifolds which cannot be easily represented by diffusions on $\mathbb{R}^n$. This paper proposes denoising diffusion models for tasks involving 3D rotations leveraging diffusion processes on the Lie group $SO(3)$ in order to generate candidate solutions to rotational alignment tasks. The experimental results show the proposed $SO(3)$ diffusion process outperforms naïve approaches such as Euler angle diffusion in synthetic rotational distribution sampling and in a 3D object alignment task.
Cite
Text
Leach et al. "Denoising Diffusion Probabilistic Models on SO(3) for Rotational Alignment." ICLR 2022 Workshops: GTRL, 2022.Markdown
[Leach et al. "Denoising Diffusion Probabilistic Models on SO(3) for Rotational Alignment." ICLR 2022 Workshops: GTRL, 2022.](https://mlanthology.org/iclrw/2022/leach2022iclrw-denoising/)BibTeX
@inproceedings{leach2022iclrw-denoising,
title = {{Denoising Diffusion Probabilistic Models on SO(3) for Rotational Alignment}},
author = {Leach, Adam and Schmon, Sebastian M and Degiacomi, Matteo T. and Willcocks, Chris G.},
booktitle = {ICLR 2022 Workshops: GTRL},
year = {2022},
url = {https://mlanthology.org/iclrw/2022/leach2022iclrw-denoising/}
}