Let’s Handle It: Generalizable Manipulation of Articulated Objects

Abstract

In this project we present a framework for building generalizable manipulation controller policies that map from raw input point clouds and segmentation masks to joint velocities. We took a traditional robotics approach, using point cloud processing, end-effector trajectory calculation, inverse kinematics, closed-loop position controllers, and behavior trees. We demonstrate our framework on four manipulation skills on common household objects that comprise the SAPIEN ManiSkill Manipulation challenge.

Cite

Text

Yang and Curtis. "Let’s Handle It: Generalizable Manipulation of Articulated Objects." ICLR 2022 Workshops: GPL, 2022.

Markdown

[Yang and Curtis. "Let’s Handle It: Generalizable Manipulation of Articulated Objects." ICLR 2022 Workshops: GPL, 2022.](https://mlanthology.org/iclrw/2022/yang2022iclrw-lets/)

BibTeX

@inproceedings{yang2022iclrw-lets,
  title     = {{Let’s Handle It: Generalizable Manipulation of Articulated Objects}},
  author    = {Yang, Zhutian and Curtis, Aidan},
  booktitle = {ICLR 2022 Workshops: GPL},
  year      = {2022},
  url       = {https://mlanthology.org/iclrw/2022/yang2022iclrw-lets/}
}