EcoAct: Economic Agent Determines When to Register What Action

Abstract

Recent advancements have enabled Large Language Models (LLMs) to function as agents that can perform actions using external tools. This requires registering, i.e. integrating tool information into the LLM context prior to taking actions. Current methods indiscriminately incorporate all candidate tools into the agent’s context and retain them across multiple reasoning steps. This process remains opaque to LLM agents and is not integrated into their reasoning procedures, leading to inefficiencies due to increased context length from irrelevant tools. To address this, we introduce EcoAct, a simple but effective tool-using algorithm that allows LLMs to selectively register tools as needed, optimizing context use. By integrating the tool registration process into the reasoning procedure, EcoAct reduces computational costs by over 50\% in multi-step reasoning tasks while maintaining performance, as demonstrated through extensive experiments. Moreover, it can be plugged into any reasoning pipeline with only minor modifications to the prompt, making it universally applicable to LLM agents now and in the future.

Cite

Text

Zhang et al. "EcoAct: Economic Agent Determines When to Register What Action." ICLR 2025 Workshops: LLM_Reason_and_Plan, 2025.

Markdown

[Zhang et al. "EcoAct: Economic Agent Determines When to Register What Action." ICLR 2025 Workshops: LLM_Reason_and_Plan, 2025.](https://mlanthology.org/iclrw/2025/zhang2025iclrw-ecoact/)

BibTeX

@inproceedings{zhang2025iclrw-ecoact,
  title     = {{EcoAct: Economic Agent Determines When to Register What Action}},
  author    = {Zhang, Shaokun and Zhang, Jieyu and Ding, Dujian and Liu, Jiale and Garcia, Mirian Del Carmen Hipolito and Mallick, Ankur and Madrigal, Daniel and Xia, Menglin and Rühle, Victor and Wu, Qingyun and Wang, Chi},
  booktitle = {ICLR 2025 Workshops: LLM_Reason_and_Plan},
  year      = {2025},
  url       = {https://mlanthology.org/iclrw/2025/zhang2025iclrw-ecoact/}
}