Robust Submodular Maximization: A Non-Uniform Partitioning Approach
Abstract
We study the problem of maximizing a monotone submodular function subject to a cardinality constraint $k$, with the added twist that a number of items $\tau$ from the returned set may be removed. We focus on the worst-case setting considered by Orlin et al.\ (2016), in which a constant-factor approximation guarantee was given for $\tau = o(\sqrt{k})$. In this paper, we solve a key open problem raised therein, presenting a new Partitioned Robust (PRo) submodular maximization algorithm that achieves the same guarantee for more general $\tau = o(k)$. Our algorithm constructs partitions consisting of buckets with exponentially increasing sizes, and applies standard submodular optimization subroutines on the buckets in order to construct the robust solution. We numerically demonstrate the performance of PRo in data summarization and influence maximization, demonstrating gains over both the greedy algorithm and the algorithm of Orlin et al.\ (2016).
Cite
Text
Bogunovic et al. "Robust Submodular Maximization: A Non-Uniform Partitioning Approach." International Conference on Machine Learning, 2017.Markdown
[Bogunovic et al. "Robust Submodular Maximization: A Non-Uniform Partitioning Approach." International Conference on Machine Learning, 2017.](https://mlanthology.org/icml/2017/bogunovic2017icml-robust/)BibTeX
@inproceedings{bogunovic2017icml-robust,
title = {{Robust Submodular Maximization: A Non-Uniform Partitioning Approach}},
author = {Bogunovic, Ilija and Mitrović, Slobodan and Scarlett, Jonathan and Cevher, Volkan},
booktitle = {International Conference on Machine Learning},
year = {2017},
pages = {508-516},
volume = {70},
url = {https://mlanthology.org/icml/2017/bogunovic2017icml-robust/}
}