Fake News Mitigation via Point Process Based Intervention

Abstract

We propose the first multistage intervention framework that tackles fake news in social networks by combining reinforcement learning with a point process network activity model. The spread of fake news and mitigation events within the network is modeled by a multivariate Hawkes process with additional exogenous control terms. By choosing a feature representation of states, defining mitigation actions and constructing reward functions to measure the effectiveness of mitigation activities, we map the problem of fake news mitigation into the reinforcement learning framework. We develop a policy iteration method unique to the multivariate networked point process, with the goal of optimizing the actions for maximal reward under budget constraints. Our method shows promising performance in real-time intervention experiments on a Twitter network to mitigate a surrogate fake news campaign, and outperforms alternatives on synthetic datasets.

Cite

Text

Farajtabar et al. "Fake News Mitigation via Point Process Based Intervention." International Conference on Machine Learning, 2017.

Markdown

[Farajtabar et al. "Fake News Mitigation via Point Process Based Intervention." International Conference on Machine Learning, 2017.](https://mlanthology.org/icml/2017/farajtabar2017icml-fake/)

BibTeX

@inproceedings{farajtabar2017icml-fake,
  title     = {{Fake News Mitigation via Point Process Based Intervention}},
  author    = {Farajtabar, Mehrdad and Yang, Jiachen and Ye, Xiaojing and Xu, Huan and Trivedi, Rakshit and Khalil, Elias and Li, Shuang and Song, Le and Zha, Hongyuan},
  booktitle = {International Conference on Machine Learning},
  year      = {2017},
  pages     = {1097-1106},
  volume    = {70},
  url       = {https://mlanthology.org/icml/2017/farajtabar2017icml-fake/}
}