Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Abstract
We propose an algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement learning. The goal of meta-learning is to train a model on a variety of learning tasks, such that it can solve new learning tasks using only a small number of training samples. In our approach, the parameters of the model are explicitly trained such that a small number of gradient steps with a small amount of training data from a new task will produce good generalization performance on that task. In effect, our method trains the model to be easy to fine-tune. We demonstrate that this approach leads to state-of-the-art performance on two few-shot image classification benchmarks, produces good results on few-shot regression, and accelerates fine-tuning for policy gradient reinforcement learning with neural network policies.
Cite
Text
Finn et al. "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks." International Conference on Machine Learning, 2017.Markdown
[Finn et al. "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks." International Conference on Machine Learning, 2017.](https://mlanthology.org/icml/2017/finn2017icml-modelagnostic/)BibTeX
@inproceedings{finn2017icml-modelagnostic,
title = {{Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks}},
author = {Finn, Chelsea and Abbeel, Pieter and Levine, Sergey},
booktitle = {International Conference on Machine Learning},
year = {2017},
pages = {1126-1135},
volume = {70},
url = {https://mlanthology.org/icml/2017/finn2017icml-modelagnostic/}
}