Asynchronous Stochastic Quasi-Newton MCMC for Non-Convex Optimization

Abstract

Recent studies have illustrated that stochastic gradient Markov Chain Monte Carlo techniques have a strong potential in non-convex optimization, where local and global convergence guarantees can be shown under certain conditions. By building up on this recent theory, in this study, we develop an asynchronous-parallel stochastic L-BFGS algorithm for non-convex optimization. The proposed algorithm is suitable for both distributed and shared-memory settings. We provide formal theoretical analysis and show that the proposed method achieves an ergodic convergence rate of ${\cal O}(1/\sqrt{N})$ ($N$ being the total number of iterations) and it can achieve a linear speedup under certain conditions. We perform several experiments on both synthetic and real datasets. The results support our theory and show that the proposed algorithm provides a significant speedup over the recently proposed synchronous distributed L-BFGS algorithm.

Cite

Text

Simsekli et al. "Asynchronous Stochastic Quasi-Newton MCMC for Non-Convex Optimization." International Conference on Machine Learning, 2018.

Markdown

[Simsekli et al. "Asynchronous Stochastic Quasi-Newton MCMC for Non-Convex Optimization." International Conference on Machine Learning, 2018.](https://mlanthology.org/icml/2018/simsekli2018icml-asynchronous/)

BibTeX

@inproceedings{simsekli2018icml-asynchronous,
  title     = {{Asynchronous Stochastic Quasi-Newton MCMC for Non-Convex Optimization}},
  author    = {Simsekli, Umut and Yildiz, Cagatay and Nguyen, Than Huy and Cemgil, Taylan and Richard, Gael},
  booktitle = {International Conference on Machine Learning},
  year      = {2018},
  pages     = {4674-4683},
  volume    = {80},
  url       = {https://mlanthology.org/icml/2018/simsekli2018icml-asynchronous/}
}