Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks
Abstract
Adversarial or test time robustness measures the susceptibility of a classifier to perturbations to the test input. While there has been a flurry of recent work on designing defenses against such perturbations, the theory of adversarial robustness is not well understood. In order to make progress on this, we focus on the problem of understanding generalization in adversarial settings, via the lens of Rademacher complexity. We give upper and lower bounds for the adversarial empirical Rademacher complexity of linear hypotheses with adversarial perturbations measured in $l_r$-norm for an arbitrary $r \geq 1$. We then extend our analysis to provide Rademacher complexity lower and upper bounds for a single ReLU unit. Finally, we give adversarial Rademacher complexity bounds for feed-forward neural networks with one hidden layer.
Cite
Text
Awasthi et al. "Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks." International Conference on Machine Learning, 2020.Markdown
[Awasthi et al. "Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks." International Conference on Machine Learning, 2020.](https://mlanthology.org/icml/2020/awasthi2020icml-adversarial/)BibTeX
@inproceedings{awasthi2020icml-adversarial,
title = {{Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks}},
author = {Awasthi, Pranjal and Frank, Natalie and Mohri, Mehryar},
booktitle = {International Conference on Machine Learning},
year = {2020},
pages = {431-441},
volume = {119},
url = {https://mlanthology.org/icml/2020/awasthi2020icml-adversarial/}
}