The Non-IID Data Quagmire of Decentralized Machine Learning
Abstract
Many large-scale machine learning (ML) applications need to perform decentralized learning over datasets generated at different devices and locations. Such datasets pose a significant challenge to decentralized learning because their different contexts result in significant data distribution skew across devices/locations. In this paper, we take a step toward better understanding this challenge by presenting a detailed experimental study of decentralized DNN training on a common type of data skew: skewed distribution of data labels across devices/locations. Our study shows that: (i) skewed data labels are a fundamental and pervasive problem for decentralized learning, causing significant accuracy loss across many ML applications, DNN models, training datasets, and decentralized learning algorithms; (ii) the problem is particularly challenging for DNN models with batch normalization; and (iii) the degree of data skew is a key determinant of the difficulty of the problem. Based on these findings, we present SkewScout, a system-level approach that adapts the communication frequency of decentralized learning algorithms to the (skew-induced) accuracy loss between data partitions. We also show that group normalization can recover much of the accuracy loss of batch normalization.
Cite
Text
Hsieh et al. "The Non-IID Data Quagmire of Decentralized Machine Learning." International Conference on Machine Learning, 2020.Markdown
[Hsieh et al. "The Non-IID Data Quagmire of Decentralized Machine Learning." International Conference on Machine Learning, 2020.](https://mlanthology.org/icml/2020/hsieh2020icml-noniid/)BibTeX
@inproceedings{hsieh2020icml-noniid,
title = {{The Non-IID Data Quagmire of Decentralized Machine Learning}},
author = {Hsieh, Kevin and Phanishayee, Amar and Mutlu, Onur and Gibbons, Phillip},
booktitle = {International Conference on Machine Learning},
year = {2020},
pages = {4387-4398},
volume = {119},
url = {https://mlanthology.org/icml/2020/hsieh2020icml-noniid/}
}