Improving Generative Imagination in Object-Centric World Models

Abstract

The remarkable recent advances in object-centric generative world models raise a few questions. First, while many of the recent achievements are indispensable for making a general and versatile world model, it is quite unclear how these ingredients can be integrated into a unified framework. Second, despite using generative objectives, abilities for object detection and tracking are mainly investigated, leaving the crucial ability of temporal imagination largely under question. Third, a few key abilities for more faithful temporal imagination such as multimodal uncertainty and situation-awareness are missing. In this paper, we introduce Generative Structured World Models (G-SWM). The G-SWM achieves the versatile world modeling not only by unifying the key properties of previous models in a principled framework but also by achieving two crucial new abilities, multimodal uncertainty and situation-awareness. Our thorough investigation on the temporal generation ability in comparison to the previous models demonstrates that G-SWM achieves the versatility with the best or comparable performance for all experiment settings including a few complex settings that have not been tested before. https://sites.google.com/view/gswm

Cite

Text

Lin et al. "Improving Generative Imagination in Object-Centric World Models." International Conference on Machine Learning, 2020.

Markdown

[Lin et al. "Improving Generative Imagination in Object-Centric World Models." International Conference on Machine Learning, 2020.](https://mlanthology.org/icml/2020/lin2020icml-improving/)

BibTeX

@inproceedings{lin2020icml-improving,
  title     = {{Improving Generative Imagination in Object-Centric World Models}},
  author    = {Lin, Zhixuan and Wu, Yi-Fu and Peri, Skand and Fu, Bofeng and Jiang, Jindong and Ahn, Sungjin},
  booktitle = {International Conference on Machine Learning},
  year      = {2020},
  pages     = {6140-6149},
  volume    = {119},
  url       = {https://mlanthology.org/icml/2020/lin2020icml-improving/}
}